Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

نویسندگان

  • Hong-Jie Tseng
  • Wei-Cheng Tian
  • Wen-Jong Wu
چکیده

This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse topology of various human regions and sense the corresponding signals from human bodies. The measured arterial pulse waveform can be used to diagnose hypertension and cardiac failure in patients. The proposed sensors have several advantages, such as flexibility, reliability, high strain, low cost, simple fabrication, and low temperature processing. The PZT thin-film deposition process includes a pyrolysis process at 150 °C/500 °C for 10/5 min, followed by an annealing process at 650 °C for 10 min. Finally, the consistent pulse wave velocity (PWV) was demonstrated based on human pulse measurements from apical to radial, brachial to radial, and radial to ankle. It is characterized that the sensitivity of our PZT-based tactile sensor was approximately 0.798 mV/g.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Tactile Sensor Using Polyurethane Thin Film

A novel capacitive tactile sensor using a polyurethane thin film is proposed in this paper. In previous studies, capacitive tactile sensors generally had an air gap between two electrodes in order to enhance the sensitivity. In this study, there is only polyurethane thin film and no air gap between the electrodes. The sensitivity of this sensor is higher than the previous capacitive tactile sen...

متن کامل

Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.

A highly-efficient, flexible piezoelectric PZT thin film nanogenerator is demonstrated using a laser lift-off (LLO) process. The PZT thin film nanogenerator harvests the highest output performance of ∼200 V and ∼150 μA·cm(-2) from regular bending motions. Furthermore, power sources generated from a PZT thin film nanogenerator, driven by slight human finger bending motions, successfully operate ...

متن کامل

MEMS Pressure Sensor With Two Thin Film Piezoelectric Read-Out

We propose the structure to have only two pares of PZT thin films on the basis of [11]. This causes the structure to become simpler and easier to fabricate. And except its first vibration mode that is also the base mode, the other modes have no effect on the acceleration measurement. So it can be a better choice for the measurement of acceleration and it can have a huge potential as a micro-sen...

متن کامل

Dome Shaped Touch Sensor Using PZT Thin Film made by Hydrothermal Method

We propose a dome shaped touch sensor unit, which is small and is applicable in high temperature environment. The PZT thin film was made on the halfround Ti substrate, and the electrodes were deposited on its surface to form the sensor and driving actuator. The PZT thin film was made on the curved surface of the substrate by the hydrothermal method. The actuator part is driven by the high frequ...

متن کامل

P(VDF-TrFE) Polymer-Based Thin Films Deposited on Stainless Steel Substrates Treated Using Water Dissociation for Flexible Tactile Sensor Development

In this work, deionized (DI) water dissociation was used to treat and change the contact angle of the surface of stainless steel substrates followed by the spin coating of P(VDF-TrFE) material for the fabrication of tactile sensors. The contact angle of the stainless steel surface decreased 14° at -30 V treatment; thus, the adhesion strength between the P(VDF-TrFE) thin film and the stainless s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2013